99 research outputs found

    Metsätieteellinen seura 90 vuotta

    Get PDF
    Suomen Metsätieteellinen Seura perustettiin huhtikuun 29. päivänä vuonna 1909, vain vajaa vuosi sen jälkeen, kun korkein metsätieteellinen opetus oli siirretty Evon metsäopistosta keisarilliseen Aleksanterin-yliopistoon. Seuran perustamisella oli epäilemättä selvä sosiaalinen tilaus; se yhdisti luontevasti piiriinsä kaikki metsäntutkimuksen parissa työskentelevät yliopiston opettajat ja alan harrastajat

    Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation

    Get PDF
    Model-calculated forecasts of soil organic carbon (SOC) are important for approximating global terrestrial carbon pools and assessing their change. However, the lack of detailed observations limits the reliability and applicability of these SOC projections. Here, we studied whether state data assimilation (SDA) can be used to continuously update the modeled state with available total carbon measurements in order to improve future SOC estimations. We chose six fallow test sites with measurement time series spanning 30 to 80 years for this initial test. In all cases, SDA improved future projections but to varying degrees. Furthermore, already including the first few measurements impacted the state enough to reduce the error in decades-long projections by at least 1 tCha(-1). Our results show the benefits of implementing SDA methods for forecasting SOC as well as highlight implementation aspects that need consideration and further research.Peer reviewe

    Metsien hiilinielut otettava mukaan biotalouden kestävyystarkasteluihin

    Get PDF
    18.7.2016 julkaistu versio korvaa 15.7.2016 julkaistun version

    Effects of biochar and ligneous soil amendments on greenhouse gas exchange during extremely dry growing season in a Finnish cropland

    Get PDF
    Organic soil amendments such as manure, biochar and compost are among the most efficient and widely used methods to increase soil carbon sequestration in agricultural soils. Even though their benefits are well known, many wood-derived materials are not yet utilized in Nordic agriculture due to a lack of incentives and knowledge of their effects in the local climate. We studied greenhouse gas exchange, plant growth and soil properties of a clay soil cultivated with oat in southern Finland in an extremely dry year. Two years earlier, the field was treated with three ligneous soil amendments-lime-stabilized fiber from the pulp industry, willow biochar and spruce biochar-which we compared against fertilized and non-fertilized controls. We found that the soil amendments increased porosity and the mean soil water holding capacity, which was most noticeable in plots amended with spruce biochar. There was a trend indicating that the mean yield and overall biomass production were larger in plots with soil amendments; however, the difference to unamended control was seldom significant due to the high variance among replicates. Manual chamber measurements revealed that carbon dioxide and methane exchange rates were reduced most probably by the exceptionally hot and dry weather conditions, but no differences could be found between the amended and unamended treatments. The nitrous oxide emissions were significantly smaller from the vegetated soil amended with willow biochar compared with the unamended control. Emissions from non-vegetated soil, representing heterotrophic respiration, were similar but without significant differences between treatments. Overall, the studied soil amendments indicated positive climatic impact two years after their application, but further research is needed to conclusively characterize the specific effects of organic soil amendments on processes affecting greenhouse gas exchange and plant growth.Peer reviewe

    Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data

    Get PDF
    BackgroundUnder the growing pressure to implement mitigation actions, the focus of forest management is shifting from a traditional resource centric view to incorporate more forest ecosystem services objectives such as carbon sequestration. Estimating the above-ground biomass in forests using airborne laser scanning (ALS) is now an operational practice in Northern Europe and is being adopted in many parts of the world. In the boreal forests, however, most of the carbon (85%) is stored in the soil organic (SO) matter. While this very important carbon pool is "invisible" to ALS, it is closely connected and feeds from the growing forest stocks. We propose an integrated methodology to estimate the changes in forest carbon pools at the level of forest stands by combining field measurements and ALS data.ResultsALS-based models of dominant height, mean diameter, and biomass were fitted using the field observations and were used to predict mean tree biophysical properties across the entire study area (50 km(2)) which was in turn used to estimate the biomass carbon stocks and the litter production that feeds into the soil. For the soil carbon pool estimation, we used the Yasso15 model. The methodology was based on (1) approximating the initial soil carbon stocks using simulations; (2) predicting the annual litter input based on the predicted growing stocks in each cell; (3) predicting the soil carbon dynamics of the annual litter using the Yasso15 soil carbon model. The estimated total carbon change (standard errors in parenthesis) for the entire area was 0.741 (0.14) Mg ha(-1) yr(-1). The biomass carbon change was 0.405 (0.13) Mg ha(-1) yr(-1), the litter carbon change (e.g., deadwood and leaves) was 0.346 (0.027) Mg ha(-1) yr(-1), and the change in SO carbon was - 0.01 (0.003) Mg ha(-1) yr(-1).ConclusionsOur results show that ALS data can be used indirectly through a chain of models to estimate soil carbon changes in addition to changes in biomass at the primary level of forest management, namely the forest stands. Having control of the errors contributed by each model, the stand-level uncertainty can be estimated under a model-based inferential approach

    Silvicultural Interventions Drive the Changes in Soil Organic Carbon in Romanian Forests According to Two Model Simulations

    Get PDF
    We investigated the effects of forest management on the carbon (C) dynamics in Romanian forest soils, using two model simulations: CBM-CFS3 and Yasso15. Default parametrization of the models and harmonized litterfall simulated by CBM provided satisfactory results when compared to observed data from National Forest Inventory (NFI). We explored a stratification approach to investigate the improvement of soil C prediction. For stratification on forest types only, the NRMSE (i.e., normalized RMSE of simulated vs. NFI) was approximately 26%, for both models; the NRMSE values reduced to 13% when stratification was done based on climate only. Assuming the continuation of the current forest management practices for a period of 50 years, both models simulated a very small C sink during simulation period (0.05 MgC ha(-1) yr(-1)). Yet, a change towards extensive forest management practices would yield a constant, minor accumulation of soil C, while more intensive practices would yield a constant, minor loss of soil C. For the maximum wood supply scenario (entire volume increment is removed by silvicultural interventions during the simulated period) Yasso15 resulted in larger emissions (-0.3 MgC ha(-1) yr(-1)) than CBM (-0.1 MgC ha(-1) yr(-1)). Under 'no interventions' scenario, both models simulated a stable accumulation of C which was, nevertheless, larger in Yasso15 (0.35 MgC ha(-1) yr(-1)) compared to CBM-CSF (0.18 MgC ha(-1) yr(-1)). The simulation of C stock change showed a strong "start-up" effect during the first decade of the simulation, for both models, explained by the difference in litterfall applied to each scenario compared to the spinoff scenario. Stratification at regional scale based on climate and forest types, represented a reasonable spatial stratification, that improved the prediction of soil C stock and stock change.Peer reviewe

    Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model

    Get PDF
    Soils account for the largest share of carbon found in terrestrial ecosystems, and their status is of considerable interest for the global carbon cycle budget and atmospheric carbon concentration. The decomposition of soil organic matter depends on environmental conditions and human activities, which raises the question of how permanent are these carbon storages under changing climate. One way to get insight into carbon decomposition processes is to analyse different carbon isotope concentrations in soil organic matter. In this paper we introduce a carbon-13-isotope-specific soil organic matter decomposition add-on into the Yasso soil carbon model and assess its functionality. The new C-13-dedicated decomposition is straightforward to implement and depends linearly on the default Yasso model parameters and the relative carbon isotope (C-13/C-12) concentration. The model modifications are based on the assumption that the heavier C-13 atoms are not as reactive as C-12. The new formulations were calibrated using fractionated C, C-13 and delta(13) measurements from litterbags containing pine needles and woody material, which were left to decompose in natural environment for 4 years. The introduced model modifications considerably improve the model behaviour in a 100-year-long simulation, where modelled delta(13) is compared against fractionated peat column carbon content. The work presented here is a proof of concept and enables C-13 to be used as a natural tracer to detect changes in the underlying soil organic matter decomposition.Peer reviewe
    • …
    corecore